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Abstract. The circular dichroic signal in the total cross-section for resonance-enhanced electric
dipole scattering is calculated by an analytic method. Applied to lanthanide ions, our results
shows that the signal is proportional to the mean value of the orbital magnetic moment, to a
good approximation. This finding is the same as that found, without approximations, for the
dichroic signal in the attenuation coefficient. Thus, the finding supports the use of the total
fluorescence yield as a method of measuring the information known to be in the coefficient. An
ion with a half-filled valence shell is shown to be an exceptional case. For f7 the signal in the
cross-section is proportional to the product of the (spin) magnetic moment and the difference
between the total decay widths for the M4 and M5 absorption lines. For all cases, we give
the angular dependence of the total cross-section, with respect to the direction of the primary
radiation and the axis of quantization for the atomic states.

1. Introduction

The experimental technique that is based on the dichroic effect in the absorption of x-rays
is emerging as a useful means by which to obtain information, at the atomic level of detail,
on the magnetic properties of materials. Exploitation of the technique is underpinned by
the sources of x-rays from particle accelerators, and its future development is assured by
new, third-generation, sources.

Both linearly and circularly polarized beams of x-rays are useful (for a review of recent
work, see, for example, Lovesey and Collins (1996) and Ebert (1996)). However, it appears
that the use of circular polarization in absorption experiments has the most to offer when
it comes to the study of the magnetic properties of materials. For one thing, the helicity in
the polarized beam can detect the preferred axis for the net magnetization in the sample. In
the absence of a magnetic field, the circular dichroic signal is zero for a paramagnetic and
an antiferromagnetic configuration of magnetic moments. For a ferromagnetic configuration
the signal tends to zero as the sample’s temperature is raised through the critical temperature
for the onset of spontaneous magnetic order. A paramagnetic material subjected to a strong
magnetic field will show a dichroic signal for circular polarization. The information which
can be extracted from the dichroic signal includes the mean value of the orbital contribution
to the magnetic moment. The analysis required for this purpose is an integration of the
dichroic signal, with respect to energy, across the absorption edge, and the use of so-called
sum rules which have been derived on the basis of an atomic (localized) model of magnetic
materials (Tholeet al 1992, Ankudinov and Rehr 1995).
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The absorption experiments are performed by measuring the attenuation of a beam of
x-rays and, also, by detecting the yield of photoelectrons or the total fluorescence yield
(Agarwal (1991), and section 4.2.6 in Lovesey and Collins (1996)). While a transmission
measurement of the attenuation coefficient, using a foil made from the material of interest,
presents itself as an ideal method, regrettably, it is often not possible to implement. The
main reason is that the strong attenuation, of which a small part is due to the magnetic
properties of the foil, demands that the foil is very thin, particularly when using soft x-rays,
and only in a few cases are the properties of the sample such that a very thin foil can be
realized.

At the moment, there is not a consensus on the efficacy of the indirect method of
measuring the attenuation coefficient which is based on the detection of fluorescence
photons; see Ma (1994), de Grootet al (1994) and van Veenendaalet al (1996). de Groot
et al (1994) have strongly called into question fluorescence yield detection as a method
of reliably measuring the attenuation coefficient of a magnetic material. Their argument
has been further refined by van Veenendaalet al (1996) who conclude from their study,
which uses a computer simulation and analytic methods, that fluorescence yield detection
is probably a safe route to the attenuation coefficient for both 3d transition-metal ions and
light lanthanide ions, and it is not safe for the investigation of heavy lanthanide ions.

The present contribution to the subject analyses, by an analytic method, a model of the
fluorescence yield that is based on the total cross-section for resonance-enhanced scattering;
the same model was used by van Veenendaalet al (1996) in their computer simulation.
We apply our results to lanthanide ions, for which the localized, or atomic picture of the
magnetic properties should be ideally suited. One finds that the difference in the total
cross-section, caused by switching from right- to left-handed circular polarization in the
primary beam of x-rays, to a good approximation is proportional to mean value of the orbital
contribution to the magnetic moment. The analysis also gives the angular distribution of the
difference signal, which might be exploited in experiments to reinforce our understanding of
the underlying fluorescence process. (Self-absorption effects are not included in our work.)
It is found that the configuration f7 (Gd3+) is an exceptional case, and the difference signal
is proportional to the product of the (spin) magnetic moment and the difference in the total
decay widths for the two absorption lines, namely the M4 and M5 lines.

The next section of the paper briefly reviews the resonant contribution to the scattering
length, which is the instrument that is common to the calculation of the attenuation
coefficient and the cross-section for scattering. A calculation of the total cross-section
is taken up in section 3, and most of the mathematical work is relegated to an appendix.
The application of our findings to lanthanide ions is the subject of section 4. A discussion
of our results, and circular dichroism in the attenuation coefficient, is found in section 5.

2. Scattering lengths

The attenuation coefficient for the absorption, and the cross-section for the scattering of
x-rays can be derived from the scattering length,f . In fact, the attenuation coefficient is
proportional to the mean value off , and the cross-section is proportional to the square of
the absolute value of matrix elements off . We start this section by discussing the cross-
section for inelastic scattering, which is considered to result in one emitted photon and an
electron transferred into a bound state.

Let us label the initial and final discrete states of the electrons in an absorbing atom byµ

andµ′, respectively, and denote the corresponding matrix elements of the scattering length
by f (µ;µ′). If the change in the energy of the x-rays fromE to E′, caused by scattering,
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is h̄ω then conservation of energy in a scattering event requires that ¯hω = Eµ′ − Eµ. The
Boltzmann factor for the initial state of the atompµ satisfies

∑
pµ = 1. With this notation

the cross-section for the scattering of x-rays is(
dσ

dE′

)
=
(
E′

E

)∑
µµ′

pµδ(h̄ω + Eµ − Eµ′)|f (µ;µ′)|2. (2.1)

Our development of this expression for the cross-section for the case of resonance-enhanced
scattering will follow the formulation set out by Lovesey and Balcar (1996) and Lovesey
and Balcar (1997), and the cited papers are hereafter referred to as papers I and III.Åberg
and Tulkki (1985) review the calculation of the cross-section for materials that are not
magnetic.

The energies of the quasi-discrete intermediate states engaged in an absorption event
usually make two distinct clusters that can be labelled by the two values of the total angular
momentum of the associated core state,J̄ . For an electric dipole (E1) absorption event by
a lanthanide ion the two clusters constitute the M4 and the M5 absorption lines.

In the formulation set out in paper III, to each cluster one assigns a mean energy and
a total decay width,0. The energy measured relative to the energy of the initial state of
the atom is denoted by1, and relative to the final energy of the atom it is denoted by1′.
When the energy of the primary x-raysE = 2πh̄c/λ is close to1, a matrix element of the
scattering length is

f (µ;µ′) = −
(

2πe

λ

)2∑
J̄

{(
1′

1

)
Z(µ;µ′)

(E −1+ (i/2)0)
}
J̄

. (2.2)

Here, inside the curly brackets all quantities, apart fromE, depend onJ̄ . The quantity not
mentioned before,Z(µ;µ′), includes the polarization vectors for the primary and secondary
beams, the radial integral for the electric dipole absorption event, and various reduced matrix
elements for the configuration of the valence electrons of the absorbing atom.

The expression for the cross-section obtained with (2.2) has to be averaged with respect
to the states of polarization in the primary beam. A method for doing this, which uses a
density matrix, is described by Berestetskiiet al (1982) and Lovesey and Collins (1996).
We are interested in the variation of the total cross-section with respect to the handedness
of circular polarization in the primary beam. In terms of a Stokes vector to describe
polarization in the primary beam, its componentP2 is the mean value of the helicity in
the beam. Hence, for our immediate purpose, after taking the average we only need that
part of the cross-section which is proportional toP2. We find that it is useful to define a
difference signal as the change in the total cross-section caused by reversing the handedness
of the helicity, from right (P2 > 0) to left (P2 < 0) handed. Our most general result for the
difference signal is derived from (A.4), and it is discussed in the next two sections.

As the last topic in this section we turn to the attenuation coefficient. This observable
is a bulk quantity. It depends on the mean value of the scattering length, and in this
respect it is the same as the scattering length which determines the cross-section for Bragg
scattering. In terms of the formulation that we are using, the attenuation coefficient is
actually proportional to the mean value ofZ averaged over the states of polarization in the
primary beam and evaluated for a forward-scattering geometry. This special value ofZ is
denoted by〈Z〉0. In terms of this quantity, we define a circular dichroic signal:

1Z = 〈Z(P2)〉0− 〈Z(−P2)〉0. (2.3)

We will return to this expression in section 5, after we have reported the result for its
analogue in scattering.
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3. The total cross-section

The total cross-section is derived from (2.1) by integrating with respect to the energy of
the secondary x-rays,E′. Evidently, the key quantity needed to understand the information
which is contained in the total cross-section is the mean value of|f |2, namely

〈|f |2〉 =
∑
µµ′

pµ|f (µ;µ′)|2. (3.1)

Our difference signal is thus

〈|f |2〉P2 − 〈|f |2〉−P2

and this can be calculated by using the expression (A.4). The latter is built from quantities
denoted by{A0(K;K ′)} which are constructed from energies, and reduced matrix elements,
for the absorption lines labelled bȳJ . The integersK andK ′ are the ranks of the tensor
operators that contribute toA0(K;K ′).

In the remainder of this section, and the following section, we consider a simplification
to the expression (A.4) that is brought about by setting aside the dependence onJ̄ of the
energies and reduced matrix elements. The appropriate value of the simplified scattering
length is (A.9), and in paper I it is called the idealized scattering length. From (A.9) one
sees that the difference signal is{

2

0

(
2πe

λ

)2}2

1Z2 (3.2)

where

1Z2 = 〈Z2(P2)〉 − 〈Z2(−P2)〉
has the dimension of (length)4. A value for 1Z2 is derived from (A.4) and (A.5) by
replacingA0 by A, which is defined in (A.8), and by replacingM andM3 by the thermal
averages〈Jc〉 and〈J 3

c 〉, respectively. Of course,〈Jc〉 is proportional to the magnetic moment
of the atom, while〈J 3

c 〉 could be expressed in terms of the magnetic octupole.

4. Lanthanide ions

The quantitiesA(K;K ′) which arise in the difference signal1Z2 are defined by (A.8), and
they can be computed by using the tables given in papers I and III. By way of an illustration,
we will continue with an investigation of1Z2 for lanthanide ions, for which the localized
model of the magnetic ion that we are using is ideally suited (Jensen and Mackintosh 1991).

The two quantitiesA(0; 1) andA(1; 1) are quite simple functions of atomic variables,
and the tables are not necessary. We find, following the definition in (A.5) and using (A.8),

Q(1) = 2

{
2

3
J (J + 1)

}1/2

A(0; 1) = −nh(2− g) 2l

3(2l + 1)2
(J ||J ||J )2〈R〉4 (4.1a)

and

A(1; 1) = (2− g)2 (J ||J ||J )
2

2(2l + 1)2
〈R〉4. (4.1b)

In these expressions,nh is the number of holes in the valence shell, whose angular
momentum isl, andg is the Land́e factor. (For convenience, values ofg for lanthanide
ions are included in table 1.) The reduced matrix element is

(J ||J ||J ) = {J (J + 1)(2J + 1)}1/2.
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Table 1. Entries in the table are in units of〈R〉4, apart from the Land́e factor in the right-hand
column. The other entries areA(1; 1) defined by (A.8), andQ(1), Q(2) andQ(3) that are
defined in accord with (A.5) and evaluated withA(K;K ′) in place ofA0(K;K ′). The ground
states of the configuration fn are determined by Hund’s rules.

Q(1) A(1; 1) Q(2) Q(3) g

f 1 −31.85 0.70 0.05 0.02 6/7
f 2 −105.78 2.64 0.07 0.01 4/5
f 3 −141.42 4.09 0.03 0.00 8/11
f 4 −102.85 3.60 −0.03 0.00 3/5
f 5 −33.07 1.57 −0.06 0.01 2/7
f 8 −66.85 1.39 0.04 0.01 3/2
f 9 −138.76 4.63 0.07 0.01 4/3
f 10 −149.86 7.02 0.03 0.00 5/4
f 11 −99.90 6.66 −0.03 0.00 6/5
f 12 −37.14 3.87 −0.07 0.01 7/6
f 13 −4.41 0.94 −0.05 0.02 8/7

The remaining two quantities in (A.4),Q(2) andQ(3), which are defined in accord
with (A.5), do not have simple values in terms of atomic variables. However, they are
readily calculated in terms of reduced matrix elements of Racah unit spherical tensors
(θJ ||W(0K)K ||θJ ) that are tabulated in paper III. The appropriate expressions are

A(1; 2) = −
{

1

3

(2l + 3)

(2l − 1)

}1/2
l(l + 1)

(2l + 1)
〈R〉4(θJ ||W(01)1||θJ )(θJ ||W(02)2||θJ )

and

A(2; 2) =
{
l(l + 1)(2l + 3)

3(2l − 1)(2l + 1)

}
〈R〉4(θJ ||W(02)2||θJ )2.

Here,θ is an abbreviation for the atomic quantum numbersν (seniority),S andL.
Values ofQ(1), A(1; 1), Q(2) and Q(3), in units of 〈R〉4, for lanthanide ions are

given in table 1. The electronic state of an ion is determined by Hund’s rules. For the
configurations f6 and f7 all of the quantities are zero.

An inspection of the entries in table 1 shows that for the lanthanide ions it is an excellent
approximation to neglectQ(2) andQ(3) in the evaluation of1Z2. In this instance, our
result for the difference signal defined through (3.2) is

1Z2 = P2〈Lc〉〈R〉4
2{2(2l + 1)}2

{
−4

3
lnh[3 cosϕ + cos(ϕ − 2θ)] + (2− g)[cosϕ − cos(ϕ − 2θ)]

}
.

(4.2)

Here〈Lc〉 = (2− g)〈Jc〉 is the orbital part of the magnetic moment of the absorbing atom.
Also, θ is the angle between the directions of the primary and secondary beams, and the
primary beam lies at an angleϕ to the axis of quantization of the atomic states, which
is the c-axis. If the difference signal1Z2 is averaged with respect to the direction of the
secondary beam it is proportional to cosϕ, and thus this signal vanishes if the primary beam
is directed at right angles to the axis of quantization.

We are obliged to turn to our most general result for the difference signal to complete
a discussion of two lanthanides, namely, Eu3+(f 6) and Gd3+(f 7). First, the ground state of
f 6 hasJ = 0. For this case our general result (A.4) is zero, becauseM = 0, and thus the
difference signal for f6 is predicted to be zero.
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According to the estimate (4.2) one gets for f7 the same, null, result. However, this
result is an aberration caused by the approximation that takes us from (A.4) to (4.2), and
the correct value of the difference signal for f7 is possibly non-zero.

In order to derive the signal for f7 one must use (A.4), because for f7 all of the relevant
reduced matrix elements of the Racah unit tensor withK > 0 apart from one are zero; the
one non-zero reduced matrix element is(θJ ||W(10)1||θJ ) = 2

√
3. This finding tells us that

there is no meaning attached to working with

(θJ ||T (K)||θJ ) =
∑
J̄

(θJ ||T (K: J̄ )||θJ )

because it is zero, for f7 andK > 0. Turning, then, to (A.5) one finds thatQ0(2) =
Q0(3) = 0, and therefore the signal (A.4) is solely due toQ0(1) andA0(1; 1), which are
evaluated from (A.6). For f7 we find a difference signal

〈|f |2〉P2 − 〈|f |2〉−P2 =
1

2
P2〈Sc〉

{
4

35

(
2πe

λ

)2}2

〈R〉4
(

1

0−
− 1

0+

)
×
{

7[3 cosϕ + cos(ϕ − 2θ)]

(
2

0−
+ 3

0+

)
+ [cosϕ − cos(ϕ − 2θ)]

(
1

0−
− 1

0+

)}
(4.3)

where 0+ and 0− are, respectively, the widths of thēJ = 5
2 (M5) and J̄ = 3

2 (M4)

absorption lines. Hence, it is now perfectly clear that, applied to f7, the approximation
which assumes that the two widths are equal predicts that the difference signal is zero.
Lifting this approximation leads to the possibility of a non-zero value for the signal, and the
prediction for f7 is the result (4.3). For lanthanides other than Gd3+(f 7) it is meaningful to
use (4.2) to estimate the difference signal, of course.

5. Discussion

Let us begin the section by briefly reviewing the circular dichroic signal in the attenuation
coefficient. The signal is found to be proportional to the projection of the mean value of
the orbital magnetic moment on the direction of propagation of the beam of x-rays. Let
ϕ be the angle between thec-axis, chosen for the quantization of the atomic states of
the absorbing ion, and the direction of propagation of the beam. Using exactly the same
theoretical framework as we have used in the body of this paper, the circular dichroic signal
in the attenuation coefficient (2.3) is found to be

1Z = −〈R〉2P2〈Lc〉 cosϕ/(2l + 1) (5.1)

whereP2 is the mean helicity in the primary beam,〈Lc〉 = (2−g)〈Jc〉 is the orbital moment,
and l is the angular momentum of the valence shell.

The quantity calculated here is the difference, or dichroic, signal in the total cross-
section for resonance-enhanced electric dipole scattering.Averaged over the direction of
propagation of the secondary beam, in the plane defined by the primary and secondary
beams, the difference signal for lanthanide ions, to a very good approximation, is

1Z2 = 1

8
〈R〉4P2〈Lc〉 cosϕ

(2l + 1)2
{−4lnh + 2− g}. (5.2)

In this expression,nh is the number of holes in the valence shell. The conditions under
which (5.2) is valid are violated by an ion with a valence shell that is half full of electrons.
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The appropriate expression for f7 (Gd3+) is found to be

1Z2 = 2〈R〉4P2〈Sc〉 cosϕ

(
0

35

)2( 1

0−
− 1

0+

)(
43

0−
+ 62

0+

)
(5.3)

in which 0+ and0− are the total decay widths for the M5 and M4 absorption lines, and
〈Sc〉 is the spin moment. Like (5.1), these expressions refer to the combined information
from the two absorption lines. It is noted that (5.2) and (5.3) are not inconsistent with the
simulation data for the model that we have studied (van Veenendaalet al 1996).

The similarity between the dichroic signal in the attenuation coefficient (5.1) and the
dichroic signal in the directionally averaged total cross-section (5.2) supports the view that
a measurement of the total fluorescence yield is a reliable method by which to obtain the
mean value of the orbital magnetic moment of the absorbing ion. For a half-filled shell,
with 〈Lc〉 = 0, the dichroic signal in the total cross-section is not necessarily zero, and it is
proportional to the mean value of the magnetic moment.

As we have mentioned, the results (5.2) and (5.3) apply to the case in which the signal
is averaged over all directions of the secondary beam of x-rays. The directional information
in the more general expressions, found in section 4, could usefully be tested with the
appropriate experiments.

In the event that (5.2) is found wanting, a better estimate of the dichroic signal can
be found with the expression (A.4) taken in conjunction with (A.6). To evaluate the latter
expression one needs values for the total decay widths. Use of the better estimate is essential
for an absorbing atom with a valence shell that is half full, and its application to such a
case is illustrated for f7 in the results (4.3) and (5.3).
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Appendix

Referring to paper III, a matrix element of the resonant contribution to the scattering length
is

f (µ;µ′) =
∑
Km0

(−1)J−M+m0

(
J

−M
K

−m0

J ′

M ′

)
X(K)m0

∑
J̄

F (K; J̄ ). (A.1)

Here,µ is an abbreviation for the atomic quantum numbersν, S, L, J andM, andJ̄ is the
total angular momentum of the core state involved in the E1 absorption event. The quantity
F(K; J̄ )is complex, on account of the non-zero decay width in the energy denominator,
and so isX(K)

m0
, which carries all the information on the states of polarization of the primary

and secondary beams of x-rays.
The cross-section for one atom is proportional to

|f (µ;µ′)|2 =
∑
K,K ′

∑
m0

{X(K)m0
}∗X(K ′)m0

(
J

−M
K

−m0

J ′

M ′

)(
J

−M
K ′

−m0

J ′

M ′

)
× {A0(K;K ′)+ iB0(K;K ′)} (A.2)
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where

A0(K;K ′)+ iB0(K;K ′) =
∑
J̄ ,J̄ ′

F ∗(K; J̄ )F (K ′; J̄ ′). (A.3)

In the calculation of the average of|f |2 over the states of polarization in the primary beam
one uses the propertiesA0(K;K ′) = A0(K

′;K) andB0(K;K ′) = −B0(K
′;K), which are

directly proved from (A.3).
The part of the averaged value of|f |2 which is of interest is the part that changes

sign when the mean helicity in the primary beam is reversed. Following Lovesey and
Collins (1996), this entails finding the part of the average value of|f |2 that depends on
the component ofP2 of the Stokes vector which is used to describe the polarization of
the primary beam. It can be shown that in the average value of|f |2 the coefficient of
P2B0(K;K ′) is zero. This result hinges on two facts, namely, thatB0(K;K ′) is odd
with respect to an interchange ofK and K ′, and that|f |2 is diagonal with respect to
m0 = M ′ −M.

In order to give an explicit expression for the average value of|f |2 it is necessary
to define the geometry of the scattering experiment. The x-rays are deflected through an
angleθ . The axis of magnetic quantization, which is taken to be thec-axis in the Cartesian
components (a, b, c), lies in the plane defined by the primary and secondary beams, the
a-axis is perpendicular to the plane, and the primary beam is at an angleϕ to thec-axis.

If µ is the density matrix for the states of partial polarization in the primary beam, the
average value of|f |2 is

Tr(µ|f |2)
where the trace operation is carried out with respect to the polarization vectors in
{X(K)m0

}∗X(K ′)m0
. The difference signal is derived from

Tr(µ|f |2)P2 − Tr(µ|f |2)−P2

and we obtain for this quantity the following result, which is correct for oneJ -manifold:

1

2
P2

M

(J ||J ||J )2
{
Q0(1)[cosϕ + cosψ cosθ ] + A0(1; 1) sinψ sinθ

+ 6M2(Q0(2)−Q0(3))[sinϕ sin 2ψ + cosϕ(3 cos2ψ − 1)]

− 2Q0(2)[J (J + 1){sinϕ sin 2ψ + cosϕ(7 cos2ψ − 5)} + 3 cosϕ sin2ψ ]

+ 3

2
Q0(3)

[
2J (J + 1){sinϕ sin 2ψ + 4 cosϕ cos2ψ}

− 1

2
sinϕ sin 2ψ − cosϕ(3 cos2ψ + 1)

]}
. (A.4)

In this result,ψ = (θ − ϕ) and

Q0(1) = 2

{
2

3
J (J + 1)

}1/2

A0(0; 1) (A.5a)

Q0(2) = A0(1; 2)/{3(2J − 1)(2J + 3)}1/2 (A.5b)

and

Q0(3) = 2A0(2; 2)/{(2J − 1)(2J + 3)}. (A.5c)

The factors ofM andJ in these expressions arise from use of algebraic formulae for the
3j -symbols in (A.2), evaluated withJ = J ′.
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Concerning (A.4), it is interesting to note that when an average is taken with respect to
the direction of the secondary beam the coefficient ofM3 vanishes, since the averages of
sin 2ψ and cos2ψ are 0 and 1/3, respectively. Also after directional averaging,

{cosϕ + cosψ cosθ} → 4

3
cosϕ sinψ sinθ → 2

3
cosϕ

and one finds that (A.4) is proportional to cosϕ.
It remains for us to give the expression forA0(K;K ′). The following result, (A.6), is

derived from work reported in paper III and the definitions (A.1) and (A.3).
First, some necessary definitions. The primary radiation has an energyE = 2πh̄c/λ,

and the E1 radial integral is〈R〉. The angular momentum of the valence shell isl, and for
the core statēl = l − 1, and J̄ = l̄ ± 1

2.

It is assumed that the spectrum of intermediate states contain two quite distinct clusters
that can be labelled by the two values ofJ̄ . The total decay width of a cluster of states is
0J̄ . We find

A0(K;K ′) =
{

2

(
2πe

λ

)2

l〈R〉2
}2

{(2K + 1)(2K ′ + 1)}1/2
{

1
l

K

l̄

1
l

}
×
{

1
l

K ′

l̄

1
l

}∑
J̄ ,J̄ ′
(θJ ||T (K: J̄ )||θ ′J ′)(θJ ||T (K ′: J̄ ′)||θ ′J ′)/(0J̄0J̄ ′).

(A.6)

The reduced matrix element of the spherical tensor operatorT (K: J̄ ) is defined in paper
III. It can be expressed in terms of variousnj -symbols and the reduced matrix elements of
Racah unit spherical tensors. In (A.6), the integerK takes the valuesK = 0, 1 and 2 by
virtue of a triangle condition in the 6j -symbol.

The expressions (A.4) and (A.6) together form our result for the difference signal in the
total cross-section for the resonance-enhanced scattering of x-rays. In the main body of the
text we consider a simplification toA0(K;K ′) that occurs when the dependence onJ̄ of
1, 1′ and0 is set aside. For this case one finds, forE close to1,

A0(K;K ′) =
((

2πe

λ

)2(
1′

1

))2
A(K;K ′)

|E −1+ (i/2)0|2
whereA(K;K ′) is

(l〈R〉2)2{(2K + 1)(2K ′ + 1)}1/2
{

1
l

K

l̄

1
l

}{
1
l

K ′

l̄

1
l

}
(θJ ||T (K)||θ ′J ′)(θJ ||T (K ′)||θ ′J ′).

(A.7)

In this last expression, the reduced matrix element(θJ ||T (K)||θ ′J ′) is defined and discussed
in paper I. Lastly, we give the corresponding expression for a matrix element of the scatt-
ering length, which in paper I is referred to as the idealized scattering length:

f0(µ;µ′) = −
(

2πe

λ

)2(
1′

1

)
Z(µ;µ′)

(E −1+ (i/2)0)

=
(

2πe

λ

)2(
1′

1

)
l〈R〉2(−1)J−M

(E −1+ (i/2)0)
∑
K

(2K + 1)1/2

×
{

1
l

K

l̄

1
l

}∑
m0

(−1)m0X(K)m0

(
J

−M
K

−m0

J ′

M ′

)
(θJ ||T (K)||θ ′J ′). (A.8)
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